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Abstract 

The bond-valence model (BVM) which relates the length 
R of a bond to its bond valence s is a widely used 
empirical approach to the interpretation and prediction of 
atomic arrangements in crystals. However, a theoretical 
foundation of the BVM appears to be fairly inadequate so 
far. In this paper derivations of the main expressions of 
R(s) for both versions of the BVM (in inverse-power and 
exponential forms) are reproduced and refined by the use 
of various semi-empirical potentials for interatomic 
interactions that are appropriate for ionic, covalent and 
intermediate ionic-covalent bonding, respectively. 
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Independence of the BVM from bonding character is 
the result of such a treatment. Interrelations between both 
versions of the BVM are also analyzed. Much attention is 
given to the question of transferability of the single bond- 
length parameter and to the special role of bond-specific 
values of the softness parameter. The latter is proved to 
be a simple function of the ionization potentials of 
bonded atoms. In turn, this explains the strong linear 
correlations between the single bond lengths from cations 
to a pair of anions and the relation between single bond 
lengths and atom sizes (sum of the covalent radii). It is 
demonstrated that a correction related to electronegativity 
difference is involved in this consideration. In general, 
one might conclude that the BVM becomes soundly 
based from both the empirical and semi-empirical 
viewpoints. 

Introduction 

The simple concept of the dependence of a bond length 
on its bond order (or bond strength) is known to be ill- 
defined, but extremely fruitful in inorganic crystal 
chemistry. The method has a very long history. For 
predominantly ionic crystals, Pauling (1929) was the first 
to introduce the notion of electrostatic bond strength 
sij = zi/vij, where z i is the charge (valence) and vii is the 
coordination number of atom i with respect to atom j. 
The valence sum rule (Pauling's second rule) is defined 
as follows 

~sij = z j ,  (1) 

where zj is the valence of atom j connecting i - - j  bonds 
with all neighboring i atoms. The use of rule (1) is 
straightforward if the coordination polyhedron around 
atom i is regular and the valences (or formal oxidation 
states) could be immediately determined from stoichio- 
metry and the position of the element in the periodic 
table. However, the situation becomes much more 
complicated if the coordination configuration is irregular 
or the valence states of the atoms are uncertain. In such 
cases a certain relation is employed between the bond 
strength value s and the corresponding bond length R, 
which is at the heart of the method of interest. 
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Recall that the evidence of a similar dependence came 
from the chemistry of carbon compounds; Indeed, the 
length of the single bond C - - C  is 1.544 A, the double 
bond C = C  is 1.330,~,o(AR~ = -0 .214 ,~)o and the triple 
bond C ~ C  is 1.204A (zaR 2 = - 0 . 3 4 0 A ) .  The value 
A R 1 / A R  2 = 0.629 is nearly equal to In 2 / In  3 = 0.630. 
This observation was used by Pauling (1947) in order to 
propose an empirical relation between the bond length Rij 
and the bond order nij 

Rij  = R 1 - b In(n0 ), (2) 

where Rio is the length of a single bond (n 0 = 1), 
b = 0.31A. Taking into account the fractional C - - C  
bonds in graphite (n = 1.33, R = 1.420,A) and benzene 
(n = 1.50, R = 1.378 ,~), the value of the constant was 

o 

estimated as b = 0.26 A. Pauling considered this value of 
b as equally suitable for both covalent and metallic 
crystals. 

In organic compounds a typical atomic valence is 
usually equal to or even greater than the coordination 
number, i.e. n > 1. On the other hand, in inorganic 
compounds and metals the opposite is more often true. 
This is why most inorganic crystal chemists prefer to use 
the bond strength s instead of the bond order n in (2). In 
place of the term 'bond strength', other terms were 
proposed for s: 'valence strength' (Zachariasen, 1963), 
'bond valence' (Donnay & Donnay, 1973) or 'valence 
strength of a bond' (Pyatenko, 1972). Although all these 
terms may be considered as synonyms, we will use in 
this paper the terms 'bond valence' (BV) and 'bond- 
valence model' (BVM), which appear to be the most 
acceptable by contemporary investigators (e.g. Brown, 
1992). 

As shown empirically for almost 1000 various bonds 
in inorganic crystals (Brown & Altermatt, 1985; Brese & 
O'Keeffe, 1991), the value of parameter b in (3) 

Rij = R l 

can normally be taken as a 
0.37 A. This point will be 
further discussion. 

- b l n ( s  o ) (3) 

'universal' constant equal to 
of particular importance for 

The other well known expression for the relation 
between sij and R 0 has the following form 

Sij = ( g i j / e l )  -N, (4) 

where R 1 and N are adjustable parameters. For a given 
type of anion (for instance, oxygen), the value of N is a 
function of electronegativity (Pyatenko, 1972), the 
number of electrons (Brown & Shannon, 1973), size 
(Allmann, 1975) or the typical coordination number v of 
a cation (Brown & Wu, 1976). 

Equations (3) and (4) both give similar results 
(Donnay & Donnay, 1973; Allmann, 1975). However, 
due to the above-mentioned 'universality' of b, (3) has an 
advantage° over (4). Using the optimized value of 
b = 0.37 A and the Inorganic Crystal Structure Database 

(Bergerhoff, Hundt, Sievers & Brown, 1983), the 
empirical values of the only fitted parameter R~ were 
determined for different pairs of atoms in a variety of 
crystal structures (Brown & Altermatt, 1985; Brese & 
O'Keeffe, 1991). For most reliable values of R l the 
estimated standard deviation is less than 0.01 A. 

Many crystallographers have used the BVM outlined 
above for many years with great success, not only to 
interpret observed bond lengths but also to predict 
expected values in crystals (Baur, 1970; Brown, 1977, 
1978). This simple approach allows to distinguish atoms 
close in atomic number (Donnay & Allman, 1970), to 
locate the positions of light atoms, including hydrogen 
bonds (Brown, 1978), to indicate the sites of an element 
with variable valences [for instance, Cu in high- 
temperature superconductors (O'Keeffe & Hansen, 
1988; Brown, 1989)] and to foresee order--disorder 
behavior in crystals (Brown, 1988). 

It is evident from the characterization of the BVM that 
it is soundly based as a purely empirical model which has 
very useful crystal chemical applications. This is the 
reason for the problem of theoretical substantiation of the 
BVM becoming highly relevant (Brown, 1992; Burdett 
& Hawthorne, 1993). Such an attempt will be undertaken 
in the following sections. 

Independence of the main expressions of the BVM 
from the bonding character 

It seems reasonable to begin the successive analysis of 
the problem with a purely ionic approach. Indeed, years 
ago Brown & Shannon (1973) used the Born-Lande-type 
interaction potential 

u ( e i j  ) = Aziz j /Ri j  + n/e~. = - a z i z j / R i j  -4- v i j f l /eq ,  (5) 

where A is the so-called Madelung constant, B and n are 
the parameters of the repulsion term; B is set proportional 
to the coordination number v 0 so that/3 is kept constant 
for a given bond from one crystal to another. After 
application of the equilibrium condition 
(dU/dRo)Ro = 0, they obtained 

S 0 = (/3n/azj)R~-", (6) 

where s 0 = (zi/vo) is the i - - j  bond valence. For a given 
value of zj and a certain structure type (so that A is 
constant), (6) can be written as 

Sij = const R/~-". (7) 

Within the same constraints, (7) is equally true for a 
single bond (sij = 1, Rij = R~), that is 

constR11 -n = 1. (8) 

Obviously, from (7) and (8) it follows that 

sij = (Ro/Ri) -("-I). (9) 
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This result is identical to (4), providing N -  n -  1. 
Remember that the values of n vary in the range 5-12, 
increasing with the number of electrons in the ion, i.e. the 
larger the ion, the greater the value of n. An average 
value of n usually accepted is 9. The typical values of N 
in (4) vary for a number of oxides in the range 4-8 
(Brown & Wu, 1976) and tend to increase with 
increasing size and coordination number of the cation. 
The average value of N is ca 6, being less than the 
expected value (8). 

There are at least two reasons for such divergence 
between the predicted ( n -  1) and the observed (N) 
values of the power of R. The first is the van der Waals 
contribution to the short-range interaction, which 
involves an R~ -6 t e rm omitted in (5). This term 
corresponds to the fifth power of Rij and RI neglected 
in (7) and (8). The second possible source of the 
disagreement is due to the above-mentioned assumption 
of proportionality between the repulsion parameter B and 
the first coordination number v. In fact, this parameter is 
proportional to the lattice sum S n = y]7 vij/k ~, where 
kij = Ri j /R o (R o is the shortest interatomic distance), 
which is a function of n and usually somewhat greater 
than v (e.g. Shanker & Agrawal, 1984). Thus, for the 
NaC1 structure type v = 6 ,  but $6 = 6 . 5 9 5 2  and 
S 8 = 6.1457, for the CsCI and CaF 2 structure types 
v = 8, but S 6 = 8.7088 and S 8 = 8.1575, for the ZnS 
structure type v = 4, but S 6 = 4.3544 and S 8 = 4.0787 
etc. Therefore, one must substitute z i /S  ~ for sij on the left 
side of (9). From the inequalities s 0 > z i /S  ~ and 
Rij /R ~ > 1, it follows that n - 1 > N. In other words, 
the BVM accounts empirically for some effects of the 
short-range and long-range interactions which were 
rejected in (5). 

The Born-Mayer parametrization of the lattice energy 
of an ionic crystal 

U(Rij ) = -Az i z j /R i j  + v i j v e x p ( - R i j / P  ) (10) 

was recently used (Jansen Chandran & Block, 1992) to 
substantiate the empirical relation (3) of the BVM. The 
repulsion term in (10) is assumed to be proportional to 
the first coordination number, 1 / p  is the so-called 
hardness parameter (p is the softness). Considering the 
equilibrium state of a static crystal, the authors found the 
following expression 

sij - -  c o n s t ( R ~ . / p ) e x p ( - R i j / P  ), (11) 

where const = yAzj. In order to present this relation in 
form (3), rewritten as 

sij = exp[R 1 - Rij/b], 

the authors assumed the validity of the following relation 
for the length of a single bond 

R l / p  = ln(constp) + 2 In (Rij/P) (12) 

and equated the parameter b in (3) and the softness 

parameter p in (10). Jansen et al. (1992) emphasized that 
the 'universal '  value of b = 0.37 (+0 .05)A is in fact 
very close to the average value of p for alkali halide 
crystals (0.33 ~,). 

Now let us continue the above consideration in another 
way. For a single bond one has, from (11), 

1 = c o n s t ( R ~ / p ) e x p ( - R 1 / p  ). (13) 

It is easily seen from (11) and (13) that 

(R1/Rij) 2 = s~ 1 e x p ( - - A R / p ) ,  (14) 

where AR = R i j -  R 1. Denoting A R / R  1 = 8, we have 
logarithmically 

pln(si j  ) = - - A R  + 2pln  (1 + 8). (15) 

When this result is compared with the initial equation (3), 
it is apparent that 

b = p [ 1  - 21n(1 + 8 ) ~ I n ( s o )  ]. (16) 

It is not difficult to estimate the second term in the 
brackets, keeping in mind that 8 << 1, 

b _~ p(1 + 2 p / R , ) .  (17) 

The correction term 2 p / R  1 is usually no more than 0.2. 
This explains the fact that the empirical value of b 
(0.37 A) is greater than the typical (average) value of the 
softness parameter p for ionic crystals (0.30-0.34,~). In 
other words, a bond is likely to be somewhat softer than 
the crystal as a whole. 

The foundations of the BVM described above were 
based on a purely ionic model. However, it is well 
known that the BVM is equally suitable for metallic, 
covalent and predominantly covalent crystals. Therefore, 
one needs to find a more general explanation of the 
common utility of the BVM. 

A semi-empirical approach to solving the problem for 
covalent molecules (and crystals) was used by Biirgi & 
Dunitz (1987). They described the interatomic interaction 
by the modified Morse potential function 

V ( A R )  = D0{exp[-2cr(AR)] - 2n 2p exp[-o-(AR)]}, 

(18) 

where AR = Rij - R1, R 1 corresponds to the length of a 
single bond, D O is the dissociation energy of a single 
bond, ¢y is the hardness parameter, nij is the bond order 
and 2p is a number close to unity (0.8-1.1 for various 
types of bond). 

Minimization of (18) with respect to AR yields 

Rij(nij ) : R 1 - p e r  -1 In (nij). (19) 

Equation (19) has the same form as (3) and coincides 
with it if  b = p =pc r  -~ and n 0 = so. Indeed, for a wide 
variety of diatomic molecules the empirical value of p is 
ca 0.5 and ¢r is ca 2,A -1 (Btirgi & Dunitz, 1987), i.e. 
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per -a "~ 0.25 ,~. This estimate is in accordance with the 
parameter b in (3), which is, for example, equal to 0.26 
for the fractional C - - C  bonds. 

Thus, the origin of the main empirical relations of the 
BVM becomes clear for the two extreme types of 
chemical bond - ionic and covalent. Now let us attempt 
to explain the independence of these relations from bond 
type. Consider a universal characterization of cohesion 
energy, namely, atomization energy E(R~j), instead of 
lattice energy, U(Rij ), given by (5) and (10). The semi- 
empirical expression of the atomization energy can be 
used in the simplified form (Urusov, 1975) 

E(e i j )  = - A z i  zj fi2 / e i j  - vijdij exp(-crR 0) 

+ v i j b i j e x p ( - R i j / P  ) + A E ( f j ) .  (20) 

Here, f/j denotes the ionicity of the i - - j  bond 
(0 < f/j _< 1), so that zifo = qi and z J o  = q j  are the so- 
called effective charges of the atoms. The second term in 
(20) describes the covalent attraction between the nearest 
neighbors i and j, the third term is due to repulsion 
between them and the fourth term is the charge-transfer 
energy. The latter depends only on the ionicity parameter 
fq and energetic properties of free atoms in their valence 
states. The parameters d 0 and bij are, in principle, 
functions off/j also. However, it is not sufficient in this 
context to involve any explicit forms of such dependen- 
cies, if one assumes that the value o f f j  does not change 
with relatively small variations of Rij. Note that (20) 
becomes a purely ionic potential at f) = 1 and a covalent 
one a t f j  = 0 and p = 0.50o" -~. The latter corresponds to 
the usual empirical observation, mentioned above, that 
the value of 2p in the Morse function (18) is close to 
unity. Then, using the equilibrium condition, we have 

pR~ 2 = const s~ I e x p ( - R o / p  ), 

i.e. a result which is not distinguishable from the 
previous one (11), except for a different constant value. 
Therefore, all further considerations remain valid and 
(12)-(17) are equally true. This indicates that the BVM 
is, in fact, not constrained by bonding character. 
However, there are some strong constraints originating 
in such electronic effects as Jahn-Teller distortion and 
the stereochemical role of lone pairs of electrons (Brown, 
1992). 

Interrelations between two different versions of BVM 

As mentioned above, the two main schemes of the 
correlation between bond valence and bond length, 
expressed by (3) and (4), correspondingly give similar 
results over the range of interest. This indicates that some 
simple connections exist between the parameters of both 
these versions of the BVM. 

Since the slope of the curves Rij versus sq is given by 
N or b, these two parameters were supposed to be 

approximately related (Brown & Wu, 1976) by 

N "~ R / b ,  (21) 

where k is an average observed bond length, at which the 
slopes of the two curves are set equal. 

It can be shown that a relation of type (21) is valid if 
the other parameters of the BVM, namely single bond 
lengths R~, are equal in both the variants of the BVM. 
Indeed, we have from (3) 

l n ( s o ) = ( R  , - R ) / b ,  

and from (4) 

In (sij) = - N  In (R/R]) .  

If R~ is set equal to R], then 

N "~ R~/b,  (22) 

or, a little more accurately (Burdett & Hawthorne, 1993), 

U + [N(N + 1)] 1/2 "~ 2R~/b.  

In fact, for many cation-oxygen bonds (Brown & Wu, 
1976) the average ratio R'~/N is equal to 0.33 (4-0.03 ,~,), 
which is ver~ close to the best empirical value of b 
(0.37 + 0.05 A). Besides, the empirical values of R~ in 
both approaches are strikingly similar. Let us quote as an 
example the two series of R~ for various M n - - O  bonds 
(A): M n n - - o  1.798 (1.790), M n m - - O  1.769 (1.760), 
M n l V - - o  1.774 (1.753), MnVn--O 1.780 (1.79)A. The 
values of 'exponential' R~ from recent work (Brese & 
O'Keeffe, 1991) are given in parentheses for comparison 
with the values of 'inverse-power' R~ (Brown & Wu, 
1976). It is worth noting that the bond-valence 
pararr~oeters R~ are significant to an accuracy of ca 
0.02A, although data for many oxides and fluorides 
justify higher precision (Brese & O'Keeffe, 1991). 

Now consider the slopes of the two curves sij(Ro) more 
generally. By differentiation one obtains from (9) 

and f r o m ( l l )  

d s J d R i j  = (1 - n)RT, j I s O, (23) 

ds i j /dR 0 = (2/Rij  - 1 /p)s  O. (24) 

Hence, it follows that 

n + 1 = Rij/P. (25) 

As N ~_ n - 1 and p = b - 2p2 /R l ,  we may write 

N + 2 = (R 1 + A R ) / ( b -  2pZ/R, ) .  (26) 

A little algebra gives (if we use unity as a good 
approximation for the square of the ratio p /b )  

N ' ~ R 1 / b ,  

in agreement with (22). 
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The distortion theorem 

Inasmuch as the BVM tends to explain and predict the 
deviations of atomic arrangements from regular poly- 
hedral packing, the distortion theorem plays an especially 
important role. This theorem is stated as follows (Brown, 
1992): 'Any deviations of the lengths of the bonds 
formed by an atom from their average length will 
increase the average length providing the average bond 
valence remains constant'. The reverse statement is 
equally true. The distortion theorem derives from the 
concave shape of the bond valence-bond length correla- 
tion (Brown, 1978; 1992). Let us now attempt to prove 
this theorem analytically. 

First consider the subsystem of two equivalent bonds 
X - - M - - X  (linear or angular). This can be a fragment of 
any regular polyhedron with a given number of X 
vertices around the M atom at its center. Let the bond 
valence of each X - - M  bond be s and the bond length be 
R. Then allow both bonds to change their bond valences 
and, therefore, their bond lengths, providing the total 
bond valence 2 s +  As1 + As 2 remains constant and 
equals 2s, so that As = As~ = --As 2. Hence 

s I = s + A s  and R 1 = R + A R  1, 

s z = s - A s  and R 2 = R + A R  2. 

For the sake of definition, let As be positive, then 
AR~ < 0 and AR 2 > 0. Going to the finite differences, 
one obtains from (23) 

As = [(s 4- As)/(R + AR1)]ARI(1 -- n), 

--As = [ ( s -  As)/(R + AR2)]AR2(1 -- n). (27) 

The summation of these two equations yields 

(s + As)[(ARI/R)(1 + ARI/R)] 

+ ( s -  As)[(ARz/R)(1 + AR2/R)] 

= 0 .  (28) 

If the squares of the small ratios ARi/R, AR2/R can 
be taken as negligible quantities, corresponding to the 
substitution of the curve R(s) by a polygonal line, then 

AR~ + AR 2 = --(As/s)(AR~ -- AR2), (29) 

in good approximation. Keeping in mind that As/s > 0 
and AR I -- AR 2 < 0, we conclude that AR 1 + AR 2 > 0. 
It follows that the average bond length will increase and 
thus the distortion theorem is proved. The reverse 
statement is easily proved in an analogous way, because 
(23) is symmetric in relation to s and R. 

Transferability of a single bond length 

One of the most striking features of the BVM is the 
constancy and transferability of a single bond length R~. 
This sole parameter (in the exponential version) depends 

only on the individuality of a pair of bonded atoms, but 
does not depend on any structural properties. For 
instance, one has to apply the same value of 
RI (Mg--O)  = 1.69,~ (Brese & O'Keeffe, 1991) to 
explain or predict the M g - - O  bond lengths in such 
different crystal structures as spinel MgA1204 (Fd3m) or 
okermanite Ca2MgSi:O 7 (P421m), with VMg = 4, peri- 
clase MgO (Fm3m) or forsterite MgaSiO 4 (Pnma) with 
VMg = 6, and garnet (pyrope) Mg3A12Si3012 (la3d) or 
silicate perovskite MgSiO 3 (Pnma) with VMg = 8. Note 
that the observed M g - - O  bond distances vary. in these 
crystals over a wide range: from 1.92 to 2.20 A. 

In order to explain this remarkable property of the 
parameter R 1 let us consider the following expression for 
the site potential of an i ion in a crystal structure (e.g. 
Urusov, 1975) 

qgi(Rij ) "- -otziR~ 1 + vo~R~'. (30) 

Here a is the so-called 'partial' Madelung constant 
characterizing the electrostatic potential at the ion site 
(Hoppe, 1970). In contrast with the 'total' Madelung 
constant A in (5) and (10), which is strongly structure- 
and stoichiometry-dependent, the values of ot vary in a 
relatively narrow interval: from 1.3 to 1.8 (Urusov, 1975; 
O'Keeffe, 1981). 

The condition of equalization of attractive and 
repulsive forces in a stable crystal structure yields 

d q g i / d e i j  = o l z  i - n v i j ~ R  l - n  = O. 

This can be rewritten in the appropriate form 

Sij - -  Z i /V i j  ~-" ( n ~ / o t ) e  l - n ,  

from which it follows for a single bond length Rl(sij = 1) 

R 1 =(n~/ot) 1/n-1 . 

Thus, the value of R 1 for a given pair of atoms will be 
a constant if n~/ot is a constant. The product nfl is 
characteristic of atomic properties and could be con- 
sidered, to a good approximation, as almost independent 
of crystal structure. The same is also true for the partial 
Madelung constant c~, as shown by O'Keeffe (1979) for 
many cation-oxygen pairs. O'Keeffe found empirically 
that the electrostatic potential at the oxygen ion site is 
expressed by 

q9 i --" _1.77 zi R-l ,  

where R is the cation-oxygen bond length which is 
appropriate for six-coordination. This remarkable result 
bears testimony to the dependence of the potential at that 
ion site only on the size of the counter ion and an absence 
of its dependence on structure, or even on the charge on 
the counter ion. In other words, the value of R~ is actually 
a unique bond-valence parameter for bonds between a 
given pair of atoms transferable within a variety of 
observed crystal and molecular structures. 
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With the exponential repulsive term instead of the 
inverse-power term in the site potential tPi(Rifl it follows 
that 

R l = pB(1 + A), (31) 

where B = In (Fp/a), A = In [(R1/p)2]/In (yp/ot)]. Both 
parameters A and B are almost constant for a given pair 
of atoms. This assumption is a close approximation to the 
truth because the product FP is characteristic of atomic 
properties and R 1/p(~_ N) appears to be dependent only 
on the number of electrons in the electronic shells of 
bonded atoms. 

Another estimation of R 1 originates from (22) and (17) 

R 1 = pN(1 + 2p/Rl)  

o r  

R 1 ~-- pN(1 + 2IN - 4 I N  2 + . . .) .  (32) 

Comparing (31) and (32), one could conclude that B is 
proportional to N and A is inversely proportional to the 
corresponding N value. Further, it is evident from (32) 
that the length of a single bond is a function of short- 
range forces. This supports the corresponding postulate 
by Gibbs & Finger (1985). 

Bond-specific softness parameters 

The approximate identity of b in the BVM [see equation 
(3)] and the softness parameter p in the Born-Mayer 
repulsion potential [see equation (10)] makes it possible 
to ascribe a specific value of b to a given bond. It is 
worth bearing in mind that such a rejection of the 
commonly accepted 'universality' of the b value 
(0.37 + 0.05 A) has more of a theoretical than a practical 
significance. 

It has long been known that the softness parameter p 
displays relatively moderate but quite noticeable changes 
from one crystal to another. For instance, Table 1 
presents the values of p for the alkali halide crystals with 
the NaCl-type structure derived empirically with two 
different input data: from compressibilities Pl and from 
transverse optic mode frequencies P2 (Singh & Shanker, 
1981). It is seen that the individual values of p vary from 
0.29 to 0.38,~. It should also be emphasized that the 
variations of values of p refer mainl), to the anion 
species: for fluorides Pl = 0.29-0.31 A, for chlorides 
Pl = 0.33-0.35 ,~, for bromides Pl = 0.34-0.36,~, and 
for iodides Pl = 0.36-0.38 ,~.. 

On the other hand, in 1931 it was shown (Zener, 1931) 
with the aid of quantum-mechanical calculations that the 
repulsion of closed-shell atoms can be expressed as an 
exponential function of the distance 

~rep = b exp(-Rij  / Pij), (33) 

where the short-range interaction constant Pij is related to 
the ionization potentials I i and lj of the interacting ions 

Table 1. Values of  softness parameter p (A,) for alkali 
halide crystals 

Crystal Pl P2 /)3 
LiF 0.290 0.296 0.286 
LiC1 0.351 0.356 0.312 
LiBr 0.348 0.383 0.321 
NaF 0.293 0.276 0.287 
NaCI 0.333 0.332 0.315 
NaBr 0.345 0.352 0.325 
NaI 0.364 0.369 0.337 
KF 0.311 0.285 0.297 
KCI 0.345 0.322 0.326 
KBr 0.358 0.336 0.336 
KI 0.376 0.344 0.348 
RbF 0.312 0.294 0.299 
RbC1 0.345 0.328 0.328 
RbBr 0.360 0.343 0.338 
RbI 0.379 0.349 0.351 

through 

1/190 = 21/2(1i 1/2 q- Ijl/2). (34) 

Here I is in atomic units (1 a.u. = 27.212eV). 
It has also long been known from molecular quantum 

chemistry (Mulliken, 1955) that the repulsion between 
bonded atoms is, to a good approximation, proportional 
to the square of the overlap integral S 2 = ( f  ~OA~O B dr) 2. If 
the valence atomic orbitals ~0 a and tp s are represented by 
the Slater-type functions ~o(r) = Nr ~-I exp(-~r),  then the 
main contribution to S 2 is converted into the following 
form 

$2 - -  '¢]' exp[--2(~A + ~B)RAB], (35) 

where ~ are the so-called orbital exponents and 2 
preserves an almost constant value within the interval 
of interatomic RAS distances of interest. 

In its turn, it has been demonstrated (Urusov, 1962) 
that the orbital exponent ~ = Z*/n* (Z* and n* are the 
effective nuclear charge and principle quantum number, 
respectively) could be well estimated by the simple 
relation 

= II/2/21/2. 

Taking this into account, a comparison of (33) and (35) 
testifies to the validity of relation (34). Thus, a semi- 
empirical estimate of the repulsion parameter P3 is given 
by 

P3 = 1.85 (~--~ I1/2) -1, (36) 

where the factor 1.85 converts P3 into A, if I is expressed 
in eV. As shown in Table 1, the values of P3 are in 
excellent agreement with Pl and P2: the average 
deviation is of the order of the experimental uncertainty. 

Another confirmation of relation (36) comes from the 
measurements of high-energy elastic scattering of atoms, 
molecules and ions (Radzig & Smimov, 1985). The 
repulsion potentials derived from these data are described 
by a function of type (33). Indeed, the correlation 
between such empirical estimates of values of P4 for 
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collisions between atoms of inert gases, inert gases and 
H,F,O, inert gases and ions of alkali metals and the 
corresponding 11/2 is found to be 

P4 = 1.82(4-0.29)(~-]P/2)-~+0.07(-I-0"04) 

(correlation coefficient 0.63). Obviously, the multiplier 
1.82 is very close to 1.85 in (36) and the second term is 
almost equal to zero. 

The anticorrelation between p and ~-~I ~/2 obtained 
above indicates that the softness p increases when the 
values of ionization potentials I decrease. This explains 
the results listed in Table 1" the values of p for iodides 
[I(I) = 10.45 eV] are the highest (ca 0.37A) and the 
values of .p for fluorides [I(F) = 17.42 eV] are the lowest 
(ca 0.30A). The first ionization potential of oxygen 
[I(O) = 13.62 eV] is very close to that of chlorine 
[I(C1) = 12.97 eV] and one could predict a proximity 
between the softness parameters of chlorides and oxides. 
Indeed, the average value of the softness parameters of 
ca 40 oxides derived recently from calculations by the 
modified electron gas (MEG) method (Freeman & 
Catlow, 1992) is 0.35 A, a value which is very close to 
the average p for chlorides in Table 1 (ca 0.34 A). 

An explanation of linear relationships between single 
bond lengths 

Equation (31) indicates that the value of R l is a linear 
function of the softness parameter p. If the hypothesis 
that the bond softness can be expressed by a constant 
value of p = b = 0.37 ,~ is valid, then it becomes rather 
difficult to understand why each bond is characterized by 
a specific value of the parameter R~. It is a serious 
problem for isoelectronic series of molecules and 
crystals. On the other hand, it has recently been shown 
(Brese & O'Keeffe, 1991) that there are strong linear 
correlations between the parameters Rl for bonds from 
cations to pairs of anions. The equation of the line is 

Rij = a ik + bjkRik. (37) 

Here, R is a single bond length, subscript i denotes a 
certain type of cation and subscripts j and k refer to a pair 
of the 12 anions, so that the empirical parameters ajk and 
bjl, are characteristic of a given anion pair jk. Equation 
(37) yields an excellent fit for a set of 66 jk  pairs (Brese 
& O'Keeffe, 1991). 

With the purpose of explaining the origin of expres- 
sion (37) and making some predictions of the values of 
the parameters ajk and bj~, let us consider the relation 
between Rij and Rik, as  follows from the estimation (31) 

Rij -- (Pij/ Pik)(Bij /Bik)eik .-1- AA,  

where zS~ -- PiiBij(Aij - Aik). If the anions j and k belong 
to the same row of the periodic table, then it is reasonable 
to assume that Bij "~" Bik and Aij ~-- Aik. Therefore, one can 

simplify the previous relation 

Rij "" (Pij/ Pik)Rik -t- z3~A, (38) 

where zS~A is set close to zero. With the aid of the 
estimates of p [see equation (33)], one obtains finally 

Ri~ = (1 + 8)Rik + ~rA, (39) 

where 8 -- (I~/2 - I~/2)/(11i/2 + I~/2). By comparing this 
result with the empirical correlation (34), one readily sees 
that 

l + d = b #  and AA=a jk .  

Using definition (31), one obtains an approximation 

a# -~ 2p In  (e i j /g i t )  "~ 2p In (Nij/Nik). 

Since the first ionization potentials change nonmono- 
tonically across a row in the periodic table (for instance, 
I N = 14.53, 1o = 13.62, I F = 17.42eV), it is better 
to use the multiplet-averaged one-electron energies 
of valence p-electrons, ep, rather than the corresponding 
ionization potentials, Ip (Allen, 1989). For the same 
examples the experimental values of e are: e N = 13.17, 
e o = 15.84 and e F = 18.14eV. 

Let us suppose approximately that an average one- 
electron energy for a typical i cation, ei, is close to 6 eV. 
With the aid of relation (39) one could then easily find 
the following values of the parameters bjk: bFo = 0.95, 
bNo = 1.06. The corresponding empirical values of the 
same parameters (bl:o -- 0.942, bNo = 1.077) are in 
good agreement with these estimates. Further, one can 
verify our assumption that a# = AA _~ 0 in these 
examples. In fact, aFo = 0.016 and aNo =-0 .006 ,~ , .  
Thus, the intercepts in (37) are very close to zero. 
Moreover, as follows from our assumption that B is 
proportional to N and A is inversely proportional to N, 
ajk > 0 if b# < 1 and a# < 0 if bjk > 1. These predic- 
tions are also in accordance with the observed signs of 
a#. 

It is much more difficult to make similar quantitative 
estimates for bonds to the pairs of anions from different 
rows of the periodic table. Nevertheless, one could 
expect that the values of bFk will always be smaller than 
1, since e F > ek (k = O, S, Se, Te, C1, Br, I, N, P, As, H). 
As shown empirically (cf. Table 1; Brese & O'Keeffe, 
1991), it is actually true in all cases but one 
(bzre = 1.007). Moreover, the smaller the value of e k 
the smaller the value of b~:k (for instance, bFa = 0.927, 
bFB r : 0.911, bri = 0.895). Estimates given by the 
procedure described above yield the following results: 
bFa = 0.91, bFB r : 0.88, bFi = 0.85. Evidently, these 
estimates are still in semi-quantative agreement with the 
observations. 

On the other hand, the values of bNk are nearly always 
larger than 1. The only exception is for the case of 
k = H, but generally the main discrepancies were 
observed for hydrides (Brese & O'Keeffe, 1991). 
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As to the values of intercepts ajk of the line (37), one 
could predict from the above analysis that ajk will be 
positive if the k anion is lighter (and smaller) than the j 
anion. In addition, from the estimate that 
a# ~_ 2p  In (NiJNik) ,  one could conclude that the greater 
the difference in Z between the anions j and k, the larger 
will be the positive value of the intercept ajk. This 
prediction corresponds to the observed facts (Brese & 
O'Keeffe, 1991), for instance: aso = 0.361, 
ase o = 0.560, ate o = 0.910.~. 

In any case, the lightest anions (k = H, N, O) are 
characterized by negative values of ajk (with the only 
exception for aVN = 0.007) and the heaviest (k = Te, I) 
have positive values of ajk (with the exception of 
arr e = -0.411 and are I = -0.553 ,~,, i.e. for the anion 
pair itself). 

Atom sizes and single bond lengths 

The values of single bond lengths R~ being transferable 
from one crystal to another clearly account for the sizes 
of bonded atoms. Indeed, these values decrease gradually 
across a row (e.g. from 1.91 A for Ca- -O to 1.68 A for 
Ni - -O at an almost constant value of N -  5.2-5.5; 
Brown & Wu, 1976) and increase down a column (e.g. 
from 1.36,~ for L i - - F  to 2.33 ,A for Cs--F;  Brese & 
O'Keeffe, 1991). Similarly, the values of R I smoothJy 
decline from La- -O  (2.172,~) to Lu- -O (1.971A) 
(Brese & O'Keeffe, 1991), reflecting the well known 
effect of 'lanthanide contraction'. 

An earlier systematic study (Brown & Altermatt, 
1985) has shown a def'mite relation between R i values 
and the sums of the ionic radii. However, ionic radii must 
be adapted for changes in coordination number and/or 
valence. In contrast, single bond lengths exhibit 
significant dependence on neither coordination number 
nor valence. Besides the example of Mn n - v n - O  bonds 
cited above, another instance is: R 1 (Cr n ~C1)o= 2.09, R 1 
(CrnI--c1) -- 2.08 and R 1 (Cr vI -C1)  = 2.12 A (Brese & 
O'Keeffe, 1991). Note that the values of R~ slightly 
increase from Cr n to Cr vI, whereas the ionic radii sharply 
decrease in the same direction: from 0.80 (Cr 2+) to 
0.44,~ (Cr 6+) for six-coordination (Shannon, 1976). This 
tendency is quite typical for many transition elements, 
although R 1 is not very different for different oxidation 
states in general, except for Cu--O,  Cu--F,  A g -  O and 
A g - - F  (Brese & O'Keeffe, 1991). These observations 
argue for a relation between the values of R l and the 
sums of covalent radii rather than ionic radii. 

Such an assumption was recently examined by 
O'Keeffe & Brese (1991). These authors have empha- 
sized that in order to express single bond lengths as sums 
of radii, a correction for electronegativity differences of 
the bonded atoms should be applied. They considered the 
well known Schomaker-Stevenson formula (Schomaker 
& Stevenson, 1941) and several other empirical expres- 
sions, of which the simplest was 

Rij = ri + rj - ( c j r  i --  c i r  ) / ( c  i -~- Cj) 

: ( c i r  i -~- c j r j ) / ( c  i + cj),  (40) 

where r i is the 'size' parameter and c i is an empirical 
parameter that may be related to electronegativity. 

The best expression found was one derived originally 
by Ray, Samuels & Pan" (1979) 

Rij - -  ri a t - r j - - r i r j ( c ] / 2  - - c ] / 2 ) 2 / ( c i r i  q - c j r j ) .  (41) 

O'Keeffe & Brese (1991) used 600 values of R 1 for 
bonds to as many as 16 different 'electronegative' 
elements and found the best values of c and r which 
minimized the squared deviation of the calculated and 
observed values of R 1 for 75 elements. The c parameters 
of all except the electronegative elements were fixed at 
the Allred-Rochow values (Allred & Rochow 1958). 
The derived c parameters for the electronegative 
elements, except H, are found to correlate well with the 
Allred--Rochow electronegativity scale. 

For bonds between atoms with close electronegativ- 
ities the correction term in (41) is generally less than the 
expected uncertainty in R 1 and may be ignored. It is also 
very interesting that the values of r quite successfully 
predict interatomic distances in metals, although no data 
for metallic compounds have been used in deriving the 
set of rj. Therefore, one might consider the size 
parameters r as a covalent or metallic single bond radii. 
However, for bonds between atoms of very different 
electronegativities, i.e. for ionic bonds, the correction 
term is important and can amount to tenths of ,A,. Thus, 
the maximum value of the correction is 11% (-0.30 ~,) 
for the Cs - -F  bond. 

Building on our previous analysis, there is an 
opportunity to take an alternative approach to the 
problem outlined above. Using (31), let us write the 
following expressions for single bond lengths for bonds 
between different (Ro) and like (Rii and Rjj) atoms 

R,j = 1 . 8 5  (Ii 1/2 -t- I ; /2 ) - l c i j ,  

Rii - -  1.85 ( 2 ] i l / 2 ) - l c i i  , (42) 

Rjj = 1.85 (21j'/2)- 'Cjj,  

where C--B(1  +A). Obviously, the covalent single 
bond radii r i and rj will be defined as follows 

ri = Ri i /2  = 1.85 (21i~/2)-~(Cii/2), 

rj = Rj j /2  = 1.85 (21] /2) - ' (Cj j /2) .  

One then obtains, using the assumption commonly 
accepted in a similar context, that C o "~ (Cii + Cjj) /2,  

Rij = r i + rj + 1.85 [Cij(li I/z + ljl/z) -1 

- (Cii/2)(21il/2) -1 -- (CjJZ)(Zlj1/2) - l]  

"~ r i + rj + [(li i/2 --  I } / 2 ) / ( I i  '/2 + l l / 2 ) ] ( r  i --  rj). 

(43) 
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The last term in (43) yields a tentative estimate of the 
electronegativity correction to the sum of the covalent 
radii. For instance, let us compare the following pairs of 
correction term values: B m F - -  -0 .04  (-0 .06) ,  
N a - - C I = - 0 . 0 8  ( -0 .14) ,  M g - - O = - 0 . 1 0  (-0.10) ,  
Z n - - S = - 0 . 0 0 , ~  (-0.01) .  The correction values de- 
rived by the use of (41) are given in parentheses. Despite 
a satisfactory agreement between these two estimates, it 
is evident that in using the new equation (43) a little 
recalibration of the covalent radii scale is needed to 
obtain a better fitting. However, our aim is to explain 
rather than to revise available sets of the BVM data. 

Concluding remarks 

It now seems clear that the wide applicability of the 
BVM has, indeed, a serious basis. It is worth emphasiz- 
ing in conclusion that the intuition of many crystal 
chemists has received, once again, further support 
through the systematic semi-empirical study presented 
here. The BVM, therefore, can be actively recommended 
for the purpose of predictions and explanations of atomic 
arrangements in crystals. It may be considered as the first 
stage of the computer modelling of crystal structures and 
properties, a topic which has progressed rapidly in recent 
years. 

The author would like to thank Mrs L. V. Petushkova 
for valuable assistance in the preparation of the manu- 
script. 
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